Content deleted Content added
No edit summary |
|||
Line 6:
[[Kernel density estimation]] is one of the most popular techniques for density estimation. It can be viewed as a generalisation of [[histogram]] density estimation with improved statistical properties.
Kernel density estimators were first introduced in the scientific literature for [[univariate]] data in the 1950s and 1960s<ref>{{cite journal | doi=10.1214/aoms/1177728190 | last=Rosenblatt | first=M.| title=Remarks on some nonparametric estimates of a density function |
Line 27:
</ul>
The choice of the kernel function <em>K</em> is not crucial to the accuracy of kernel density estimators, whereas the choice of the bandwidth matrix <strong>H</strong> is the single most important factor affecting its accuracy
<math>K (\bold{x}) = (2\pi)^{-d/2} \exp(-\tfrac{1}{2} \, \bold{x}^T \bold{x}).</math>
Line 39:
<math>\operatorname{AMISE} (\bold{H}) = n^{-1} |\bold{H}|^{-1/2} R(K) + \tfrac{1}{4} m_2(K)^2
where
Line 45:
<li><math>R(K) = \int K(\bold{x})^2 \, d\bold{x}</math>. For the normal kernel <math>K</math>, <math>R(K) = (4 \pi)^{-d/2}</math>
<li><math>\operatorname{D}^2 f</math> is the <em>d x d</em> Hessian matrix of second order partial derivatives of <math>f</math>
<li><math>\bold{R}(\operatorname{D}^2 f) = \int (\operatorname{vec} \, \operatorname{D}^2 f (\bold{x})) (\operatorname{vec} \, \operatorname{D}^2 f (\bold{x}))^T \, d\bold{x}</math>▼
</ul>
This formula of the AMISE is due to <ref name="
<math>\operatorname{MISE} (\bold{H}) = \operatorname{AMISE} (\bold{H}) + o(n^{-1} |\bold{H}|^{-1/2}) + O(\operatorname{tr} \, \bold{H}^2)</math>
Line 57 ⟶ 52:
where o, O indicate the usual small and [[big O notation]]. Heuristically this statement implies that the AMISE is a 'good' approximation of the MISE as the sample size <em>n → ∞<em>.
The ideal optimal bandwidth selector is
The many different varieties of bandwidth selectors arise from the different estimators of the MISE or AMISE. We concentrate on two classes of selectors which have been shown to be the most widely applicable in practise: smoothed cross validation and plug-in selectors.▼
<math>\bold{H}_{\operatorname{AMISE}} = \operatorname{argmin}_{\bold{H} \in F} \, \operatorname{AMISE} (\bold{H})</math>
where <em>F</em> is the space of all symmetric, positive definite matrices.
▲Since this ideal selector contains the unknown density function >em>f</em>, it cannot be used directly. The many different varieties of data-based bandwidth selectors arise from the different estimators of the
=== Plug-in ===
The plug-in (PI) selector of the AMISE is formed by replacing the Hessian matrix by its estimator
<math>\operatorname{PI}(\bold{H}) = n^{-1} |\bold{H}|^{-1/2} R(K) + \tfrac{1}{4} m_2(K)^2
▲
and <math>\hat{\bold{H}}_{\operatorname{PI}} = \operatorname{argmin}_{\bold{H} \in F} \, \operatorname{PI} (\bold{H})</math> is the plug-in selector<ref>{{cite journal | author1=Wand, M.P. | author2=Jones, M.C. | title=Multivariate plug-in bandwidth selection | journal=Computational Statistics | year=1994 | volume=9 | pages=97-177}}</ref><ref>{{cite journal | doi=10.1080/10485250306039 | author1=Duong, T. | author2=Hazelton, M.L. | title=Plug-in bandwidth matrices for bivariate kernel density estimation | journal=Journal of Nonparametric Statistics | year=2003 | volume=15 | pages=17-30}}</ref>
<ref name="CD2010">{{cite journal|doi=10.1007/s11749-009-0168-4 | author1=Chacón, J.E | author2=Duong, T. | title=Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices | journal=[[Test]] | year=2010 | volume=19 | pages=375-398}}</ref>.
Line 74 ⟶ 83:
<!--- Categories --->
[[Category:Articles created via the Article Wizard]]
ℝℝℝℝ
|