Content deleted Content added
No edit summary |
No edit summary |
||
Line 63:
<math>\operatorname{PI}(\bold{H}) = n^{-1} |\bold{H}|^{-1/2} R(K) + \tfrac{1}{4} m_2(K)^2
\int \operatorname{tr}^2 (\bold{H} \widehat{\operatorname{D}^2 f}_{\bold{G}} (\bold{x})) \, d\bold{x}</math>
=== Smoothed cross validation ===
Smoothed cross validation (SCV) is a subset of a larger class of [[cross-validation_(statistics) | cross validation]] techniques.
<math>\operatorname{SCV}(\bold{H}) = n^{-1} |\bold{H}|^{-1/2} R(K) +
Line 74:
+ K_{2\bold{G}}) (\bold{X}_i - \bold{X}_j)</math>
Thus <math>\hat{\bold{H}}_{\operatorname{SCV}} = \operatorname{argmin}_{\bold{H} \in F} \, \operatorname{SCV} (\bold{H})</math> is the SCV selector<ref>{{cite journal | doi=10.1007/BF01205233 | author1=Hall, P. | author2=Marron, J. | author3=Park, B. | title=Smoothed cross-validation | journal=Probability Theory and Related Fields | year=1992 | volume=92 | pages=1-20}}</ref><ref>{{cite journal | doi=10.1111/j.1467-9469.2005.00445.x | author1=Duong, T. | author2=Hazelton, M.L. | title=Cross validation bandwidth matrices for multivariate kernel density estimation | journal=Scandinavian Journal of Statistics | year=2005 | volume=32 | pages=485-506}}</ref>.
These references also contain algorithm on optimal estimation of the pilot bandwidth matrix <strong>G</strong>.
<ref name="CD2010">{{cite journal|doi=10.1007/s11749-009-0168-4 | author1=Chacón, J.E | author2=Duong, T. | title=Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices | journal=[[Test]] | year=2010 | volume=19 | pages=375-398}}</ref>.
|