Multivariate kernel density estimation: Difference between revisions

Content deleted Content added
Drleft (talk | contribs)
No edit summary
Drleft (talk | contribs)
No edit summary
Line 1:
{{Userspace draft|source=ArticleWizard|date=September 2010}}
 
[[Kernel density estimation]] is one of the most popular techniques for [[density estimation]] i.e., estimation of [[probability density function|probability density functions]], which is one of the fundamental questions in [[statistics]].
It can be viewed as a generalisation of [[histogram]] density estimation with improved statistical properties.
Kernel density estimators were first introduced in the scientific literature for [[univariate]] data in the 1950s and 1960s<ref>{{cite journal | doi=10.1214/aoms/1177728190 | last=Rosenblatt | first=M.| title=Remarks on some nonparametric estimates of a density function | journal=Annals of Mathematical Statistics | year=1956 | volume=27 | pages=832-837}}</ref><ref>{{cite journal | doi=10.1214/aoms/1177704472| last=Parzen | first=E.| title=On estimation of a probability density function and mode | journal=Annals of Mathematical Statistics| year=1962 | volume=33 | pages=1065-1076}}</ref> and subsequently have been widely adopted. It was soon recognised that analogous estimators for multivariate data would be an important addition to [[multivariate statistics]]. Based on research carried out in the 1990s and 2000s, multivariate kernel density estimation has reached a level of maturity comparable to their univariate counterparts.<ref>{{cite book | author=Simonoff, J.S. | title=Smoothing Methods in Statistics | publisher=Springer | date=1996 | isbn=0387947167}}</ref>
Line 42:
<li><math>R(K) = \int K(\bold{x})^2 \, d\bold{x}</math>, with <math>R(K) = (4 \pi)^{-d/2}</math> when <math>K</math> is a normal kernel
<li><math>\int \bold{x} \bold{x}^T K(\bold{x})^2 \, d\bold{x} = m_2(K) \bold{I}_d</math>,
with <strong>I</strong><sub>d</sub> being the <em>d x d</em> [[identity matrix]], with <em>m</em><sub>2</sub> = 1 for the normal kernel
<li><math>\operatorname{D}^2 f</math> is the <em>d x d</em> Hessian matrix of second order partial derivatives of <math>f</math>
<li><math>\bold{\Psi}_4 = \int (\operatorname{vec} \, \operatorname{D}^2 f(\bold{x})) (\operatorname{vec}^T \operatorname{D}^2 f(\bold{x})) \, d\bold{x}</math> is a <em>d</em><sup>2</sup> x <em>d</em><sup>2</sup> matrix of integrated fourth order
partial derivatives of <em>f</em>
<li>vec is the vector operator which stacks the columns of a matrix into a single vector e.g. <math>\operatorname{vec}\begin{bmatrix}a & c \\ b & d\end{bmatrix} = \begin{bmatrix}a & b & c & d\end{bmatrix}^T.</math>
</ul>
Line 62 ⟶ 63:
 
<math>\operatorname{PI}(\bold{H}) = n^{-1} |\bold{H}|^{-1/2} R(K) + \tfrac{1}{4} m_2(K)^2
\int (\operatorname{trvec}^2T (\bold{H}) \widehathat{\operatornamebold{D\Psi}^2}_4 f}_{(\bold{G}}) (\boldoperatorname{xvec})) \, d\bold{xH})</math>
 
where <math>\hat{\bold{\Psi}}_4 (\bold{G}) = n^{-1} \sum_{i=1}^n
where\sum_{j=1}^n <math>[(\widehatoperatorname{vec} \, \operatorname{D}^2 f}_{\bold{G}}) (\boldoperatorname{xvec}) = n^{-1}T \sum_operatorname{i=1D}^n D^2)] K_\bold{G} (\bold{xX}_i - \bold{X}_i_j)</math>. Thus <math>\hat{\bold{H}}_{\operatorname{PI}} = \operatorname{argmin}_{\bold{H} \in F} \, \operatorname{PI} (\bold{H})</math> is the plug-in selector<ref>{{cite journal | author1=Wand, M.P. | author2=Jones, M.C. | title=Multivariate plug-in bandwidth selection | journal=Computational Statistics | year=1994 | volume=9 | pages=97-177}}</ref><ref>{{cite journal | doi=10.1080/10485250306039 | author1=Duong, T. | author2=Hazelton, M.L. | title=Plug-in bandwidth matrices for bivariate kernel density estimation | journal=Journal of Nonparametric Statistics | year=2003 | volume=15 | pages=17-30}}</ref>. These references also contain algorithms on optimal estimation of the pilot bandwidth matrix <strong>G</strong>.
 
=== Smoothed cross validation ===