Subgradient method: Difference between revisions

Content deleted Content added
Subgradient-projection methods: {{cite article| last1=Kiwiel | first1=Krzysztof C. | last2=Larsson |first2=Torbjörn | last3=Lindberg | first3=P. O. | title=Lagrangian relaxation via bal
Line 67:
| isbn = 1-886529-00-0
}}
</ref> On some problems, subgradient-projection methods are surprisingly competitive with proximal-bundle methods of descent; both subgradient-projection methods and contemporary bundle-methods often use "ballstep[[level set|level]] control" rules for choosing step-sizes.<ref>
{{cite book| last=Lemaréchal|first=Claude|authorlink=Claude Lemaréchal|chapter=Lagrangian relaxation|pages=112–156|url=http://dx.doi.org/10.1007/3-540-45586-8_4|title=Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000|editor=Michael Jünger and Denis Naddef|series=Lecture Notes in Computer Science|volume=2241|publisher=Springer-Verlag| ___location=Berlin|year=2001|isbn=3-540-42877-1|id={{MR|1900016}}.{{doi|10.1007/3-540-45586-8_4}}|}} </ref><ref>
{{cite article| last1=Kiwiel | first1=Krzysztof&nbsp;C. | last2=Larsson |first2=Torbjörn | last3=Lindberg | first3=P.&nbsp;O. | title=Lagrangian relaxation via ballstep subgradient methods | journal=Mathematics of Operations Research | volume=32 | year=2007 | number=3| pages=669–686 | month=August | id={{MR|2348241}}.{{doi|10.1287/moor.1070.0261}} | }}
</ref>
 
==Constrained optimization==