Content deleted Content added
→References: {{cite article|last1=Hettich|first1=R.|last2=Kortanek|first2=K. O.|title=Semi-infinite programming: Theory, methods, and applications|url=http://www.jstor.org/stable/2132425|jour |
* {{cite book|last1=Bonnans|first1=J. Frédéric|last2=Shapiro|first2=Alexander|chapter=5.4 and 7.4.4 Semi-infinite programming|title=Perturbation analysis of optimization problems|series=Spri |
||
Line 1:
{{Unreferenced|date=May 2008}}
In [[mathematics]], '''semi-infinite programming''' ('''SIP''') is an [[optimization problem]] with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints [http://glossary.computing.society.informs.org/second.php?page=S.html#Semi-infinite_program]. In the former case the constraints are typically parameterized.<ref>
* {{cite book|last1=Bonnans|first1=J. Frédéric|last2=Shapiro|first2=Alexander|chapter=5.4 and 7.4.4 Semi-infinite programming|title=Perturbation analysis of optimization problems|series=Springer Series in Operations Research|publisher=Springer-Verlag|___location=New York|year=2000|pages=496–526 and 581|isbn=0-387-98705-3|id={{MR|1756264}}|}}
* M. A. Goberna and M. A. López, ''Linear Semi-Infinite Optimization'', Wiley, 1998.
* {{cite article|last1=Hettich|first1=R.|last2=Kortanek|first2=K. O.|title=Semi-infinite programming: Theory, methods, and applications|url=http://www.jstor.org/stable/2132425|journal=SIAM Review|volume=35|year=1993|number=3|pages=380–429|doi=http://dx.doi.org/10.1137/1035089|id={{MR|1234637}}.{{jstor|2132425}}|}}
</ref>
==Mathematical formulation of the problem==
|