Content deleted Content added
moving no footnotes tag to top |
inline citation |
||
Line 9:
==Fundamental equation of multiple regression analysis==
The coefficient of multiple determination ''R''<sup>2</sup> (a [[scalar (mathematics)|scalar]]), is computed using the [[Euclidean space|vector]] ''c'' of cross-correlations between the predictor variables and the criterion variable, its [[transpose]] ''c''', and the [[Matrix (mathematics)|matrix]] ''R''<sub>''xx''</sub> of inter-correlations between predictor variables. The "fundamental equation of multiple regression analysis"<ref>Visualstatistics.net [http://www.visualstatistics.net/Visual%20Statistics%20Multimedia/multiple_regression_analysis.htm]</ref> is
::''R''<sup>2</sup> = ''c''' ''R''<sub>''xx''</sub><sup>−1</sup> ''c''.
Line 17:
==References==
{{reflist}}
* Paul D. Allison. ''Multiple Regression: A Primer'' (1998)
* Cohen, Jacob, et al. ''Applied Multiple Regression - Correlation Analysis for the Behavioral Sciences'' (2002) (ISBN 0805822232)
Line 26 ⟶ 28:
==External links==
* [http://www.amstat.org/publications/jse/v9n3/stanton.html A Brief History of Linear Regression Analysis]
* [http://www.docstoc.com/docs/3530187/A-Derivation-of-the-Sample-Multiple-Corelation-Formula-for-Standard-Scores, "Derivations"]
|