Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
Fixed how the math looks and change notation for hypergeometric and polylogarithm functions
m general fixes, removed wikify tag using AWB
Line 1:
{{Wikify|date=August 2009}}
 
In [[probability theory]] and [[statistics]], the '''exponential-logarithmic (EL) distribution''' is a family of lifetime [[probability distribution|distributions]] with
decreasing [[failure rate]], defined on the interval&nbsp;(0,&nbsp;&infin;). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
 
<TABLE class="infobox bordered wikitable"
Line 64 ⟶ 62:
:<math> f(x; p, \beta) := \left( \frac{1}{-\ln p}\right) \frac{\beta(1-p)e^{\beta x}}{1-(1-p)e^{\beta x}} </math>
where <math>p\in (0,1)</math> and <math>\beta >0</math>. This function is strictly decreasing in <math>x</math> and tends to zero as <math>x\rightarrow \infty</math>. The EL distribution has [[mode|modal value]] given, at x=0, by
:<math>\frac{\beta (1-p)}{-p \ln p}</math>
The EL reduces to the [[exponential distribution]] with parameter <math>\beta</math>, as <math>p\rightarrow 1</math>.
 
Line 115 ⟶ 113:
Let ''U'' be a [[random variate]] from the standard [[Uniform distribution (continuous)|uniform distribution]].
Then the following transformation of ''U'' has the EL distribution with
parameters ''p'' and&nbsp;''&beta;β'':
 
: <math> X = \frac{1}{\beta}\ln \left(\frac{1-p}{1-p^U}\right).</math>