Content deleted Content added
→The ring of invariants: schur |
→References: isbn |
||
Line 26:
*{{Citation | last1=Gordan | first1=Paul | title=Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Funktion mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist. | doi=10.1515/crll.1868.69.323 | year=1868 | journal= J. f. Math | volume=69 | pages= 323–354}}
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | url=http://books.google.com/books?isbn=0521449030|title=Theory of algebraic invariants | origyear=1897 | publisher=[[Cambridge University Press]] | isbn=978-0-521-44457-6 | id={{MR|1266168}} | year=1993}}
*{{Citation | last1=Schur | first1=Issai | editor1-last=Grunsky | editor1-first=Helmut | title=Vorlesungen über Invariantentheorie | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Die Grundlehren der mathematischen Wissenschaften
*{{Citation | last1=Shioda | first1=Tetsuji | title=On the graded ring of invariants of binary octavics | url=http://www.jstor.org/stable/2373415 | id={{MR|0220738}} | year=1967 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=89 | pages=1022–1046}}
*{{Citation | last1=Sylvester | first1=J. J. | author1-link=J. J. Sylvester | last2=Franklin | first2=F. | title=Tables of the Generating Functions and Groundforms for the Binary Quantics of the First Ten Orders | url=http://dx.doi.org/10.2307/2369240 | doi=10.2307/2369240 | id={{MR|1505222}} | year=1879 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=2 | issue=3 | pages=223–251}}
|