Invariant of a binary form: Difference between revisions

Content deleted Content added
Line 27:
*{{Citation | last1=Gordan | first1=Paul | title=Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Funktion mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist. | doi=10.1515/crll.1868.69.323 | year=1868 | journal= J. f. Math | volume=69 | pages= 323–354}}
*{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | url=http://books.google.com/books?isbn=0521449030|title=Theory of algebraic invariants | origyear=1897 | publisher=[[Cambridge University Press]] | isbn=978-0-521-44457-6 | id={{MR|1266168}} | year=1993}}
*{{Citation | last1=Kung | first1=Joseph P. S. | last2=Rota | first2=Gian-Carlo | author2-link=Gian-Carlo Rota | title=The invariant theory of binary forms | url=http://www.ams.org/journals/bull/1984-10-01/S0273-0979-1984-15188-7 | doi=10.1090/S0273-0979-1984-15188-7 | id={{MR|722856}} | year=1984 | journal=American Mathematical Society. Bulletin. New Series | issn=0002-9904 | volume=10 | issue=1 | pages=27–85}}
*{{Citation | last1=Schur | first1=Issai | editor1-last=Grunsky | editor1-first=Helmut | title=Vorlesungen über Invariantentheorie | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Die Grundlehren der mathematischen Wissenschaften| id={{MR|0229674}} | year=1968 | volume=143 |isbn = 978-3540041399}}
*{{Citation | last1=Shioda | first1=Tetsuji | title=On the graded ring of invariants of binary octavics | url=http://www.jstor.org/stable/2373415 | id={{MR|0220738}} | year=1967 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=89 | pages=1022–1046}}