Content deleted Content added
m statment ---> statement |
|||
Line 42:
Specifically, if <i>F</i> has ___domain type <b>T</b> and codomain type <b>U</b>, then it can be replaced with a predicate <i>P</i> of type (<b>T</b>,<b>U</b>).
Intuitively, <i>P</i>(<i>X</i>,<i>Y</i>) means <i>F</i>(<i>X</i>) = <i>Y</i>.
Then whenever <i>F</i>(<i>X</i>) would appear in a
To be able to make the same deductions, you need an additional proposition:
: [[For all]] <i>X</i> of type <b>T</b>, for some [[unique]] <i>Y</i> of type <b>U</b>, <i>P</i>(<i>X</i>,<i>Y</i>).
Line 50:
This may seem to be a problem if you wish to specify a proposition [[schema (logic)|schema]] that applies only to functional predicates <i>F</i>; how do you know ahead of time whether it satisfies that condition?
To get an equivalent formulation of the schema, first replace anything of the form <i>F</i>(<i>X</i>) with a new variable <i>Y</i>.
Then [[universally quantify]] over each <i>Y</i> immediately after the corresponding <i>X</i> is introduced (that is, after <i>X</i> is quantified over, or at the beginning of the
Finally, make the entire
Let us take as an example the [[axiom schema of replacement]] in [[Zermelo-Fraenkel set theory]].
Line 59:
First, we must replace <i>F</i>(<i>C</i>) with some other variable <i>D</i>:
: ∀ <i>A</i>, ∃ <i>B</i>, ∀ <i>C</i>, <i>C</i> ∈ <i>A</i> → <i>D</i> ∈ <i>B</i>.
Of course, this
: ∀ <i>A</i>, ∃ <i>B</i>, ∀ <i>C</i>, ∀ <i>D</i>, <i>C</i> ∈ <i>A</i> → <i>D</i> ∈ <i>B</i>.
We still must introduce <i>P</i> to guard this quantification:
|