Content deleted Content added
→Algorithm description: explain why non-negative |
m →Algorithm description: typo |
||
Line 23:
Notice that the bracketed expression is the weight of ''p'' in the original weighting.
Since the reweighting adds the same amount to the weight of every s-t path, a path is a shortest path in the original weighting if and only if it is a shortest path after reweighting. The weight of edges that belong to a shortest path from ''q'' to any node is zero, and therefore the lengths of the shortest paths from ''q'' to every node become zero in the reweighted graph; however, they still remain shortest paths. Therefore, there can be no negative edges: if edge ''uv'' had a negative weight after the reweighting, then the zero-length path from ''q'' to ''u'' together with this edge would form a negative-length path from ''q'' to ''v'', contradicting the fact that all vertices have zero distance from ''
==Analysis==
|