Error analysis for the Global Positioning System: Difference between revisions

Content deleted Content added
FrescoBot (talk | contribs)
m Bot: fixing section wikilinks and minor changes
Selective availability: duplicated in following section
Line 248:
 
Before it was turned off on May 1, 2000, typical SA errors were about 50&nbsp;m (164&nbsp;ft) horizontally and about 100&nbsp;m (328&nbsp;ft) vertically.<ref>Grewal (2001), p. 103.</ref> Because SA affects every GPS receiver in a given area almost equally, a fixed station with an accurately known position can measure the SA error values and transmit them to the local GPS receivers so they may correct their position fixes. This is called Differential GPS or ''DGPS''. DGPS also corrects for several other important sources of GPS errors, particularly ionospheric delay, so it continues to be widely used even though SA has been turned off. The ineffectiveness of SA in the face of widely available DGPS was a common argument for turning off SA, and this was finally done by order of President Clinton in 2000.
 
Another restriction on GPS, antispoofing, remains on. This encrypts the ''P-code'' so that it cannot be mimicked by an enemy transmitter sending false information. Few civilian receivers have ever used the P-code, and the accuracy attainable with the public C/A code is so much better than originally expected (especially with DGPS) that the antispoof policy has relatively little effect on most civilian users. Turning off antispoof would primarily benefit surveyors and some scientists who need extremely precise positions for experiments such as tracking the motion of a tectonic plate.
 
DGPS services are widely available from both commercial and government sources. The latter include WAAS and the [[US Coast Guard|U.S. Coast Guard's]] network of [[Low frequency|LF]] marine navigation beacons. The accuracy of the corrections depends on the distance between the user and the DGPS receiver. As the distance increases, the errors at the two sites will not correlate as well, resulting in less precise differential corrections.