Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
Introduction: doi and tidy citation
Moments: tidy citation
Line 85:
:<math>E(X^r;p,\beta)=-r!\frac{\operatorname{Li}_{r+1}(1-p) }{\beta^r\ln p},</math>
where <math>\operatorname{Li}_a(z)</math> is the [[polylogarithm]] function which is defined as
follows (Lewin, 1981) :<ref>Lewin, L., (1981,) ''Polylogarithms and Associated Functions'', North
Holland, Amsterdam.</ref>
:<math>\operatorname{Li}_a(z) =\sum_{k=1}^{\infty}\frac{z^k}{k^a}.</math>