Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
Moments: tidy citation
SmackBot (talk | contribs)
m Dated {{Citation needed}}. (Build p608)
Line 2:
decreasing [[failure rate]], defined on the interval&nbsp;(0,&nbsp;∞). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
 
<TABLE class="infobox bordered wikitable"
style="FONT-SIZE: 95%; MARGIN-BOTTOM: 0.5em; MARGIN-LEFT: 1em; WIDTH: 325px">
<CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
Line 59:
=== Distribution ===
 
The [[probability density function]] (pdf) of the EL distribution is given by{{cnCitation needed|date=March 2011}}
 
:<math> f(x; p, \beta) := \left( \frac{1}{-\ln p}\right) \frac{\beta(1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}} </math>
Line 79:
 
: <math>F_{N,D}(n,d,z):=\sum_{k=0}^\infty \frac{ z^k \prod_{i=1}^p\Gamma(n_i+k)\Gamma^{-1}(n_i)}{\Gamma(k+1)\prod_{i=1}^q\Gamma(d_i+k)\Gamma^{-1}(d_i)}</math>
where <math>n=[n_1, n_2,\dots , n_N]</math> and <math>{d}=[d_1, d_2, \dots , d_D]</math>.
 
The moments of <math>X</math> can be derived from <math>M_X(t)</math>. For