Content deleted Content added
Added log-concave shortening |
No edit summary |
||
Line 1:
In [[mathematics]], a sequence {{math|''a''<sub>0</sub>, ''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>}} of nonnegative real numbers is called a '''logarithmically concave sequence''', or a '''log-concave sequence''' for short, if {{math|''a''<sub>''i''</sub><sup>2</sup>
Examples of log-concave sequences are given by the [[binomial coefficient]]s along any row of [[Pascal's triangle]].
Line 6:
{{Reflist}}
* {{cite journal|last=Stanley|first=R. P.|authorlink=Richard P. Stanley|title=Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry|journal=Annals of the New York Academy of Sciences|year=1989|month=December|volume=576|pages=
==See also==
|