Content deleted Content added
No edit summary |
actually, IMO Heun now refers primarily to the latter method |
||
Line 1:
In [[mathematics]] and [[computational science]], '''Heun's method'''
{{Citation | last1=Ascher | first1=Uri M. | last2=Petzold | first2=Linda R. | title=Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | publisher=[[Society for Industrial and Applied Mathematics]] | ___location=Philadelphia | isbn=978-0-89871-412-8 | year=1998}}.</ref>), or a similar two-stage [[Runge–Kutta method]] method. It is named after [[Karl L. W. M. Heun]] and is a [[numerical analysis|numerical]] procedure for solving [[Ordinary_differential_equation|ordinary differential equations]] (ODEs) with a given [[Initial_value_problem|initial value]]. Both variants can be seen as extensions of the [[Euler method]] into two-stage second-order Runge–Kutta methods.
The procedure for calculating the numerical solution to the initial value problem via the improved Euler's method is:
:<math>y'(t) = f(t,y(t)), \qquad \qquad y(t_0)=y_0, </math>
Line 18 ⟶ 17:
==Runge–Kutta method==
{| cellpadding=3px cellspacing=0px
Line 27 ⟶ 26:
|-
||| style="border-right:1px solid;" | || 1/2 || 1/2
|}
The other method referred to as Heun's method has the Butcher table<ref>
{{Citation | last1=Leader | first1=Jeffery J.| title=Numerical Analysis and Scientific Computation | publisher=[[Addison-Wesley]] | ___location=Boston | isbn=0-201-73499-0 | year=2004}}.</ref>:
{| cellpadding=3px cellspacing=0px
|width="20px"| || style="border-right:1px solid;" | 0
|-
||| style="border-right:1px solid; border-bottom:1px solid;" | 2/3 || style="border-bottom:1px solid;" | 1
| style="border-bottom:1px solid;" |
|-
||| style="border-right:1px solid;" | || 1/4 || 3/4
|}
|