Content deleted Content added
→References: added reflist |
Thy.nguyen.m (talk | contribs) No edit summary |
||
Line 5:
Array processing is used in [[radar]], [[sonar]], seismic exploration, anti-jamming and [[wireless]] communications. One of the main advantages of using array processing along with an array of sensors is a smaller foot-print. The problems associated with array processing include the number of sources used, their [[direction of arrival|direction of arrivals]], and their signal [[waveforms]].<ref>Torlak, M. [http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/13_Array_Processing/lecture13/lecture13.pdf Spatial Array Processing]. Signal and Image Processing Seminar. University of Texas at Austin.</ref>
There are four assumptions in array processing. The first assumption is that there is uniform propagation in all directions of isotropic and nondispersive medium. The second assumption is that for far field array processing, the radius of propagation is much greater than size of the array and that there is plane wave propagation. The third assumption is that there is a zero mean white noise and signal, which shows uncorrelation. Finally, the last assumption is that there is no coupling and the calibration is perfect.<ref>Torlak, M. [http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/13_Array_Processing/lecture13/lecture13.pdf Spatial Array Processing]. Signal and Image Processing Seminar. University of Texas at Austin.</ref>
== See also ==
|