Logarithmic integral function: Difference between revisions

Content deleted Content added
m typo
li(n) and Li(n)
Line 1:
Definite [[integral]] defined as:
 
: '''li(''x'')''' &equiv; <font size="+2">&int;</font><sub>''0''</sub><sup>''x''</sup> 1/ln ''t'' d''t''
 
is a non-elemental [[function]] called '''logarithmic integral''' or '''integral logarithm''' and denoted with '''li(''x'')''' or '''Li(''x'')'''. For ''x'' > 1 in a point ''t''=1 this integral diverges, in this case we use for Lili(''x'') the main value of unessential integral. LogarithmicThis integral with the main value of nondefinite integral comesis in a varietyconnection ofwith formulas''integral concerningexponential thefunction'' densityor of''exponential [[primeintegral'' number|primes]]such inas [[numberthat theory]]li(''x'') and= speciallyEi in(ln [[prime''x''). numberIf theorem|primewe numbers theorem]], where for example the estimation forsubstitute ''prime counting functionx'' &pi;(with e<sup>''nu'')</sup>, iswe get a series:
 
: &pi;li(e<sup>''nu'') ~ Li(n</sup>) = &intgamma;<sub> + ln ''2u'' + ''u'' + ''u''</subsup>2</sup>/2 &middot; 2! + ''nu''<sup>3</sup> 1/3 ln&middot; ''t''3! + d''tu''.<sup>4</sup>/4 &middot; 4! - ...,
 
where &gamma; &#8776; 0.57721 56649 01532 is [[Leonhard Euler|Euler-Mascheroni's constant]]. The logarithmic integral also obeys next identity:
This integral is in a connection with ''integral exponential function'' such as that li(''x'') = Ei (ln ''x''). If we substitute ''x'' with e<sup>''u''</sup>, we get a series:
 
:li(ex<sup>''u''</sup>) = &gamma; + ln ln ''u'' +- ln ''u'' + ''u''<sup>font size="+2"> &sum;</supfont><sub>n=1</2 sub><sup>&middotinfin;</sup> 2! +(ln ''u'')<sup>3''n''</sup>/3''n'' &middot; 3''n''! + ''um''<sup>4''n''</sup>/4 &middot; 4! - ...,
 
Logarithmic integral with the main value of nondefinite integral comes in a variety of formulas concerning the density of [[prime number|primes]] in [[number theory]] and specially in [[prime number theorem|prime numbers theorem]], where for example logarithmic integral is defined so that Li(2) = 0 and the estimation for ''prime counting function'' &pi;(''n'') is:
 
: &pi;(''n'') ~ '''Li(n)''' &equiv; <font size="+2">&int;</font><sub>''2''</sub><sup>''n''</sup> 1/ ln ''t'' d''t''.
 
:Li(''n'') = li(''x'') - li(2) &#8776; li(''x'') - 1.04516 = Ei (ln ''x'')
where &gamma; &#8776; 0.57721 56649 01532 is [[Leonhard Euler|Euler-Mascheroni's constant]].