Content deleted Content added
No edit summary |
|||
Line 1:
{{Refimprove|date=December 2009}}
In [[coding theory]], the '''Gilbert–Varshamov bound''' (due to [[Edgar Gilbert]]<ref>{{citation|first=E. N.|last=Gilbert|authorlink=Edgar Gilbert|title=A comparison of signalling alphabets|journal=[[Bell System Technical Journal]]|volume=31|year=1952|pages=504–522}}.</ref> and independently Rom Varshamov<ref>{{citation|first=R. R.|last=Varshamov|title=Estimate of the number of signals in error correcting codes|journal=Dokl. Acad. Nauk SSSR|volume=117|year=1957|pages=739–741}}.</ref>) is a bound on the parameters of a (not necessarily [[linear code|linear]]) [[code]] . It is occasionally known as the '''Gilbert–[[Claude Shannon|Shannon]]–Varshamov bound''' (or the '''GSV bound'''), but the '''Gilbert–Varshamov bound''' is by far the most popular name. Varshamov proved this bound by using the probabilistic method for linear code. For this proof, check [http://en.wikipedia.org/wiki/GV-linear-code here] for more detail.
==Statement of the bound==
|