Content deleted Content added
No edit summary |
No edit summary |
||
Line 188:
\left \Vert{ \mathbf{AB}-\cfrac{\mathbf{AB}\bullet\mathbf{BC}}{(BC)^2}\mathbf{BC}} \right \|
=\sqrt{(AB)^2-\cfrac{(\mathbf{AB}\bullet\mathbf{BC})^2}{(BC)^2}}</math><br />
<br />
:<math>
\mathbf{M_{AB}}=(M_{ABx},M_{ABy},M_{ABz})</math><br />
:<math>
\mathbf{M_{AC}}=(M_{ACx},M_{ACy},M_{ACz})</math><br />
:<math>
\mathbf{M_{BC}}=(M_{BCx},M_{BCy},M_{BCz})</math><br />
<br />
:<math>
Line 219 ⟶ 226:
:<math>
{M_{BCz}} = {z_B}+ \left [\dfrac{(BD)^2+(BC)^2-(CD)^2}{2(BC)^2} \right ](z_C-z_B)
</math><br />
:<math>
\mathbf{N_{AB}}=(N_{ABx},N_{ABy},N_{ABz})</math><br />
:<math>
\mathbf{N_{AC}}=(N_{ACx},N_{ACy},N_{ACz})</math><br />
:<math>
\mathbf{N_{BC}}=(N_{BCx},N_{BCy},N_{BCz})</math><br />
<br />
:<math>
Line 285 ⟶ 300:
<br />
== Discussion ==
This is a robust solution incorporating all possibilities and accommodating non-intersecting cases with the closest answer using the least squares calculation of matrix H and '''b'''.
<br />
== See also ==
* [[Sphere]]
|