P-adic exponential function: Difference between revisions

Content deleted Content added
m One full stop is enough
p-adic logarithm: fix change of variable confusion, reword, expand, +Iwasawa logarithm
Line 13:
==''p''-adic logarithm function==
 
The power series
One can also define a '''''p''-adic logarithm function''' by the power series
:<math>\log_plog(1+zx)=\sum_{n=1}^\infty \frac{(-1)^{n+1}zx^n}{n},</math>
converges for ''x'' in '''C'''<sub>''p''</sub> satisfying |''x''|<sub>''p''</sub>&nbsp;&lt;&nbsp;1 and so defines the '''''p''-adic logarithm function''' log<sub>''p''</sub>(''z'') for |''z''&nbsp;&minus;&nbsp;1|<sub>''p''</sub>&nbsp;&lt;&nbsp;1 satisfying the usual property log<sub>''p''</sub>(''zw'')&nbsp;=&nbsp;log<sub>''p''</sub>''z''&nbsp;+&nbsp;log<sub>''p''</sub>''w''. The Butfunction thislog<sub>''p''</sub> can be extended to all of {{SubSup|'''C'''|''p''|×}} (the set of nonzero elements of '''C'''<sub>''p''</sub>) by writingimposing anythat it continue to satisfy this last property and setting log<sub>''zp''</sub>(''p'')&nbsp;=&nbsp;0. inSpecifically, every element ''w'' of {{SubSup|'''C'''<sub>|''p''|×}} can be written as ''w''&nbsp;=&nbsp;''p<sup>r''</subsup>·ζ·''z'' aswith ''r'' a rational number, ζ a root of unity, and |''z''&nbsp;=&minus;&nbsp;1|<sub>''p''<sup/sub>&nbsp;&lt;&nbsp;1,<ref>{{harvnb|Cohen|2007|loc=Proposition 4.4.44}}</ref> in which case log<sub>''mp''</supsub>·(''uw''·)&nbsp;=&nbsp;log<sub>''vp'',</sub>(''z'').<ref>In wherefactoring ''mw'' as above, there is a rationalchoice number,of a root involved in writing ''up<sup>r</sup>'' since ''r'' is rational; however, different choices differ only by multiplication by a root of unity, ofwhich ordergets coprimeabsorbed tointo the factor ζ.</ref> This function on {{SubSup|'''C'''|''p'',|×}} andis sometimes called the ''v'Iwasawa logarithm''' liesto inemphasize the original ___domainchoice of convergence for log<sub>''p''</sub>(''p'')&nbsp;=&nbsp;0. In fact, sothere is an extension of the logarithm from |''vz''&nbsp;&minus;&nbsp;1|<sub>''p''</sub>&nbsp;&lt;&nbsp;1. to Weall thenof define{{SubSup|'''C'''|''p''|×}} for each choice of log<sub>''p''</sub>(''zp'') toin be log'''C'''<sub>''p''</sub>(''v'').<ref>{{harvnb|Cohen|2007|loc=§4.4.11}}</ref>
 
==Properties==
Line 24:
 
And for suitable ''z'', so that everything is defined, we have exp<sub>''p''</sub>(log<sub>''p''</sub>(''z''))&nbsp;=&nbsp;''z'' and log<sub>''p''</sub>(exp<sub>''p''</sub>(''z''))&nbsp;=&nbsp;''z''.
 
The roots of the Iwasawa logarithm log<sub>''p''</sub>(''z'') are exactly the elements of '''C'''<sub>''p''</sub> of the form ''p<sup>r''</sup>·ζ where ''r'' is a rational number and ζ is a root of unity.<ref>{{harvnb|Cohen|2007|loc=Proposition 4.4.45}}</ref>
 
Note that there is no analogue in '''C'''<sub>''p''</sub> of [[Euler's identity]], ''e''<sup>2''πi''</sup>&nbsp;=&nbsp;1. This is a corollary of [[Strassmann's theorem]].
 
Another major difference to the situation in '''C''' is that the ___domain of convergence of exp<sub>''p''</sub> is much smaller than that of log<sub>''p''</sub>. A modified exponential function &mdash; the [[Artin–Hasse exponential]] &mdash; can be used instead which converges on |''z''|<sub>''p''</sub>&nbsp;&lt;&nbsp;1.
 
==Notes==
{{reflist}}
 
==References==
* Chapter 12 of {{cite book | last=Cassels | first=J. W. S. | authorlink=J. W. S. Cassels | title=Local fields | series=[[London Mathematical Society|London Mathematical Society Student Texts]] | publisher=[[Cambridge University Press]] | year=1986 | isbn=0-521-31525-5 }}
*{{Citation
| last=Cohen
| first=Henri
| author-link=Henri Cohen
| title=Number theory, Volume I: Tools and Diophantine equations
| publisher=Springer
| ___location=New York
| series=[[Graduate Texts in Mathematics]]
| volume=239
| year=2007
| isbn=978-0-387-49922-2
| id={{MR|2312337}}
| doi=10.1007/978-0-387-49923-9
}}
 
==External links==