Content deleted Content added
m One full stop is enough |
p-adic logarithm: fix change of variable confusion, reword, expand, +Iwasawa logarithm |
||
Line 13:
==''p''-adic logarithm function==
The power series
:<math>\
converges for ''x'' in '''C'''<sub>''p''</sub> satisfying |''x''|<sub>''p''</sub> < 1 and so defines the '''''p''-adic logarithm function''' log<sub>''p''</sub>(''z'') for |''z'' − 1|<sub>''p''</sub> < 1 satisfying the usual property log<sub>''p''</sub>(''zw'') = log<sub>''p''</sub>''z'' + log<sub>''p''</sub>''w''. The
==Properties==
Line 24:
And for suitable ''z'', so that everything is defined, we have exp<sub>''p''</sub>(log<sub>''p''</sub>(''z'')) = ''z'' and log<sub>''p''</sub>(exp<sub>''p''</sub>(''z'')) = ''z''.
The roots of the Iwasawa logarithm log<sub>''p''</sub>(''z'') are exactly the elements of '''C'''<sub>''p''</sub> of the form ''p<sup>r''</sup>·ζ where ''r'' is a rational number and ζ is a root of unity.<ref>{{harvnb|Cohen|2007|loc=Proposition 4.4.45}}</ref>
Note that there is no analogue in '''C'''<sub>''p''</sub> of [[Euler's identity]], ''e''<sup>2''πi''</sup> = 1. This is a corollary of [[Strassmann's theorem]].
Another major difference to the situation in '''C''' is that the ___domain of convergence of exp<sub>''p''</sub> is much smaller than that of log<sub>''p''</sub>. A modified exponential function — the [[Artin–Hasse exponential]] — can be used instead which converges on |''z''|<sub>''p''</sub> < 1.
==Notes==
{{reflist}}
==References==
* Chapter 12 of {{cite book | last=Cassels | first=J. W. S. | authorlink=J. W. S. Cassels | title=Local fields | series=[[London Mathematical Society|London Mathematical Society Student Texts]] | publisher=[[Cambridge University Press]] | year=1986 | isbn=0-521-31525-5 }}
*{{Citation
| last=Cohen
| first=Henri
| author-link=Henri Cohen
| title=Number theory, Volume I: Tools and Diophantine equations
| publisher=Springer
| ___location=New York
| series=[[Graduate Texts in Mathematics]]
| volume=239
| year=2007
| isbn=978-0-387-49922-2
| id={{MR|2312337}}
| doi=10.1007/978-0-387-49923-9
}}
==External links==
|