Modular invariant theory: Difference between revisions

Content deleted Content added
Dickson invariant: factorization
Line 7:
Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) these determinants are all multiplied by det(''g''), so they are all invariants of SL<sub>''n''</sub>('''F'''<sub>''p''</sub>) and the ratio [''e''<sub>1</sub>, ... ,''e''<sub>''n''</sub>]/[0,1,...,''n''&minus;1] are invariants of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>), called '''Dickson invariants'''. Dickson proved that the full ring of invariants '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ... ,''X''<sub>''n''</sub>]<sup>GL<sub>''n''</sub>('''F'''<sub>''q''</sub>)</sup> is a polynomial algebra over the ''n'' Dickson invariants [0,1,...,''i''&minus;1,''i''+1,...,''n'']/[0,1,...,''n''&minus;1] for ''i''=0, 1, ..., ''n''&minus;1.
{{harvtxt|Steinberg|1987}} gave a shorter proof of Dickson's theorem.
 
The matrices [''e''<sub>1</sub>, ... ,''e''<sub>''n''</sub>] are divisible by all non-zero linear forms in the variables ''X''<sub>''i''</sub> with coefficients in the finite field '''F'''<sub>''q''</sub>. In particular [0,1,...,''n''&minus;1] is a product of such linear forms, taken over 1+''q''+''q''<sup>2</sup>+...+''q''<sup>''n''–1</sup> representatives of ''n–1'' dimensional projective space over the field.
 
==See also==