Root datum: Difference between revisions

Content deleted Content added
Line 1:
In mathematics, the '''root datum''' ('''donnée radicielle''' in French) of a connected split [[reductive group|reductive]] [[algebraic group]] over a field is a generalization of a [[root system]] that determines the group up to isomorphism. They were introduced by M.[[Michel Demazure]] in [[Grothendieck's Séminaire de géométrie algébrique|SGA III]], published in 1970.
 
==Definition==
Line 30:
 
==References==
*M.[[Michel Demazure]], Exp. XXI in [http://modular.fas.harvard.edu/sga/sga/3-3/index.html SGA 3 vol 3]
*[[T. A. Springer]], [http://www.ams.org/online_bks/pspum331/pspum331-ptI-1.pdf ''Reductive groups''], in [http://www.ams.org/online_bks/pspum331/ ''Automorphic forms, representations, and L-functions'' vol 1] ISBN 0-8218-3347-2
[[Category:Representation theory]]