Content deleted Content added
Added an alternative (more general?) derivation of the recursive relationship |
Fixed up the math. |
||
Line 1:
==Buzen's algorithm==
Buzen's algorithm is an algorithm related to [[queueing theory]] used to calculate the [[normalization constant]] <math>G(N)</math> for a [[closed jackson network]].
First proposed by [[Jeffery P. Buzen]] in 1973.<ref name="buzen-1973">{{cite journal
Line 12:
| volume = 16
| issue = 9
}}
{|
|-
|<math>g(m, n)</math>
|<math>= \sum_{n_1 + \cdot\cdot\cdot + n_m = n} \prod_{i=1}^m f_i( n_i )</math>
|-
|
|<math>= \sum_{j=0}^n \sum_{n_1 + \cdot\cdot\cdot + n_{m-1} = n-j, n_m = j} \prod_{i=1}^m f_i( n_i )</math>
|-
|
|<math>= \sum_{j=0}^n f_m( j ) \sum_{n_1 + \cdot\cdot\cdot + n_{m-1} = n-j} \prod_{i=1}^{m-1} f_i( n_i )</math>
|-
|
|<math>= \sum_{j=0}^n f_m( j ) g( m-1, n-j )</math>
|}
<math>g(m, 0) = f_m( 0 )</math> (Confirm?)
This recursive relationship allows for all <math>G(N)</math> up to any value of N in [[Big O notation|order]] <math>O(MN^2)</math> time.
There is a more efficent algorithm for finding <math>G(N)</math> for some network. If we assume that <math>f_{i>1}( n ) = cy_i^n</math>, then the recursive relationship can be simplified as follows:
{|
|-
|<math>g(m,n)</math>
|<math>= \sum_{j=0}^n f_m( j ) g( m-1, n-j )</math>
|-
|
|<math>= f_m( 0 ) g( m-1, n ) + \sum_{j=1}^n f_m( j ) g( m-1, n-j )</math>
|-
|
|<math>= f_m( 0 ) g( m-1, n ) + y_m \sum_{j=1}^{n-1} f_m( j ) g( m-1, n-1-j)</math>
|-
|
|<math>= f_m( 0 ) g( m-1, n ) + y_m g( m, n-1 )</math>
|}
This simpler recursive relationship allows for all <math>
===References===
<references/>
(Confirm and expand references?)
|