Content deleted Content added
m r2.7.1) (robot Adding: ko:함수 행렬식 |
m Various citation cleanup (identifiers mostly), replaced: {{MathSciNet | id = 2366932}} → {{MR|2366932}} (7), | id={{MR|2366932}} → | mr=2366932 (7), typos fixed: , → , (2) using AWB |
||
Line 49:
Let ''S'' be an elliptic [[differential operator]] with smooth coefficients which is positive on functions of compact support. That is, there exists a constant ''c'' > 0 such that
:<math>\langle\phi,S\phi\rangle \ge c\langle\phi,\phi\rangle</math>
for all compactly supported smooth functions
:<math>0<\lambda_1\le\lambda_2\le\cdots,\qquad\lambda_n\to\infty.</math>
Then the zeta function of ''S'' is defined by the series:<ref>See {{harvtxt|Osgood|Phillips|Sarnak|1988}}. For a more general definition in terms of the spectral function, see {{harvtxt|Hörmander|1968}} or {{harvtxt|Shubin|1987}}.</ref>
:<math>\zeta_S(s) = \sum_{n=1}^\infty \frac{1}{\lambda_n^s}.</math>
It is known that
Formally, differentiating this series term-by-term gives
Line 61:
Since the analytic continuation of the zeta function is regular at zero, this can be rigorously adopted as a definition of the determinant.
This kind of Zeta-regularized functional determinant also appears when evaluating sums of the form <math> \sum_{n=0}^{\infty} \frac{1}{(n+a)} </math>
==Practical example==
[[Image:Infinite potential well.svg|thumb|The infinte potential well with ''A'' = 0.]]
===The infinite potential well===
We will compute the determinant of the following operator describing the motion of a [[quantum mechanics|quantum mechanical]] particle in an [[particle in a box|infinite potential well]]:
Line 131 ⟶ 132:
<references/>
*{{Citation | last1=Berline | first1=Nicole | last2=Getzler | first2=Ezra | last3=Vergne | first3=Michèle | title=Heat Kernels and Dirac Operators | isbn=978-3-540-20062-8 | year=2004}}
* {{Citation | last1=Branson | first1=Thomas P. | title=Q-curvature, spectral invariants, and representation theory |
* {{Citation | last1=Branson | first1=Thomas P. | title=The functional determinant | publisher=Seoul National University Research Institute of Mathematics Global Analysis Research Center | ___location=Seoul | series=Lecture Notes Series |
* {{Citation | last1=Hörmander | first1=Lars | author1-link=Lars Hörmander | title=The spectral function of an elliptic operator |
* {{Citation | last1=Osgood | first1=B. | last2=Phillips | first2=R. | last3=Sarnak | first3=Peter | authorlink3=Peter Sarnak| title=Extremals of determinants of Laplacians |
* {{Citation | last1=Ray | first1=D. B. | last2=Singer | first2=I. M. |authorlink2=Isadore Singer| title=''R''-torsion and the Laplacian on Riemannian manifolds. | doi=10.1016/0001-8708(71)90045-4 |
* {{Citation | last1=Seeley | first1=R. T. | title=Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) | publisher=[[American Mathematical Society]] | ___location=Providence, R.I. |
*{{Citation | last1=Shubin | first1=M. A. | title=Pseudodifferential operators and spectral theory | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | series=Springer Series in Soviet Mathematics | isbn=978-3-540-13621-7 |
[[Category:Determinants]]
|