Content deleted Content added
→External links: [http://glossary.computing.society.informs.org/second.php?page=S.html#Semi-infinite_program Description of semi-infinite programming from INFORMS (Institute for Operations Researc |
m Various citation cleanup (identifiers mostly), replaced: |url=http://www.jstor.org/stable/2132425 → |jstor=2132425 (2), }}.{{jstor|2132425}} → }} | jstor = 2132425 (2), |id={{MR|1756264}} → |mr=1756264 (4) using AWB |
||
Line 1:
In [[optimization (mathematics)|optimization theory]], '''semi-infinite programming''' ('''SIP''') is an [[optimization problem]] with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints. In the former case the constraints are typically parameterized.<ref>
* {{cite book|last1=Bonnans|first1=J. Frédéric|last2=Shapiro|first2=Alexander|chapter=5.4 and 7.4.4 Semi-infinite programming|title=Perturbation analysis of optimization problems|series=Springer Series in Operations Research|publisher=Springer-Verlag|___location=New York|year=2000|pages=496–526 and 581|isbn=0-387-98705-3|
* M. A. Goberna and M. A. López, ''Linear Semi-Infinite Optimization'', Wiley, 1998.
* {{cite article|last1=Hettich|first1=R.|last2=Kortanek|first2=K. O.|title=Semi-infinite programming: Theory, methods, and applications|
</ref>
Line 35:
* Edward J. Anderson and Peter Nash, ''Linear Programming in Infinite-Dimensional Spaces'', Wiley, 1987.
* {{cite book|last1=Bonnans|first1=J. Frédéric|last2=Shapiro|first2=Alexander|chapter=5.4 and 7.4.4 Semi-infinite programming|title=Perturbation analysis of optimization problems|series=Springer Series in Operations Research|publisher=Springer-Verlag|___location=New York|year=2000|pages=496–526 and 581|isbn=0-387-98705-3|
* M. A. Goberna and M. A. López, ''Linear Semi-Infinite Optimization'', Wiley, 1998.
* {{cite article|last1=Hettich|first1=R.|last2=Kortanek|first2=K. O.|title=Semi-infinite programming: Theory, methods, and applications|
* David Luenberger (1997). ''Optimization by Vector Space Methods.'' John Wiley & Sons. ISBN 0-471-18117-X.
* Rembert Reemtsen and Jan-J. Rückmann (Editors), ''Semi-Infinite Programming (Nonconvex Optimization and Its Applications)''. Springer, 1998, ISBN 07923505451998
Line 44:
* [http://glossary.computing.society.informs.org/second.php?page=S.html#Semi-infinite_program Description of semi-infinite programming from INFORMS (Institute for Operations Research and Management Science)].
{{Mathapplied-stub}}▼
[[Category:Optimization in vector spaces]]
[[Category:Approximation theory]]
[[Category:Numerical analysis]]
▲{{Mathapplied-stub}}
|