Anger function: Difference between revisions

Content deleted Content added
Sikory (talk | contribs)
fixed broken link from 1110 to 11.10
m Various citation cleanup (identifiers mostly), typos fixed: , → , (4) using AWB
Line 19:
:<math>-\sin(\pi \nu)\mathbf{E}_\nu(z) = \cos(\pi\nu)\mathbf{J}_\nu(z)-\mathbf{J}_{-\nu}(z)</math>
 
so in particular if &nu;ν is not an integer they can be expressed as linear combinations of each other. If &nu;ν is an integer then Anger functions '''J'''<sub>&nu;ν</sub> are the same as Bessel functions ''J''<sub>&nu;ν</sub>, and Weber functions can be expressed as finite linear combinations of [[Struve function]]s.
 
==Differential equations==
Line 25:
the Anger functions satisfy the equation
 
:<math>z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = (z-\nu)\sin(\pi z)/\pi</math>
 
and the Weber functions satisfy the equation
Line 33:
==References==
*{{AS ref|12|498}}
*C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig , 5 (1855) pp. &nbsp;1–29
*{{dlmf|id=11.10|title=Anger-Weber Functions|first=R. B. |last=Paris}}
*{{springer|id=A/a012490|title=Anger function|first=A.P.|last= Prudnikov}}
*{{springer|id=W/w097320|title=Weber function|first=A.P.|last= Prudnikov}}
*[[G.N. Watson]], "A treatise on the theory of Bessel functions" , 1–2 , Cambridge Univ. Press (1952)
*H.F. Weber, Zurich Vierteljahresschrift , 24 (1879) pp. &nbsp;33–76
 
[[Category:Special functions]]