Truncated power function: Difference between revisions

Content deleted Content added
Undid revision 350928999 by RDBury (talk)
source and cleaned up definition, alternative definition
Line 1:
{{references|date=October 2009}}
{{expert-subject|Mathematics|date=October 2009}}
In the [[mathematical]] subfield of [[numerical analysis]] the '''truncated power function''' is a generalization of the [[indicator function]].
 
==Definition==
Given a function ''f'' theThe '''truncated power function'''<ref>{{cite is defined asbook
|title=Interpolation and Approximation with Splines and Fractals
|first=Peter|last=Massopust
|publisher: Oxford University Press, USA
|year=2010
|isbn=0195336542
|page=46
}}</ref> with exponent <math>n</math> is defined as
 
:<math>f_x_+^n :=
\left\{\begin{matrixcases}
fx^n &\mbox{if}:\ fx \ge 0 \\
0 &\mbox{if}:\ fx < 0.
\end{matrixcases}\right.
</math>
 
Alternatively, you may consider the subscript plus as an individual function with
:<math>x_+ =
\begin{cases}
x &:\ x \ge 0 \\
0 &:\ x < 0.
\end{cases}
</math>
and interpret the exponent as conventional [[power function|power]].
 
==Notes==
Line 19 ⟶ 31:
*[http://mathworld.wolfram.com/TruncatedPowerFunction.html Truncated Power Function on MathWorld]
 
==References==
[[Category:Numerical analysis]]
<references/>
 
[[Category:Numerical analysis]]
{{math-stub}}