Bentley–Ottmann algorithm: Difference between revisions

Content deleted Content added
Blahbleh (talk | contribs)
The naive algorithm would compare n segments to (n-1) neighbours, so would be O(n^2)
m References: Various citation cleanup + WP:AWB fixes . Report errors and suggestions at User talk:CitationCleanerBot
Line 62:
*{{citation|last1=de Berg|first1=Mark|last2=van Kreveld|first2=Marc|last3=Overmars|first3=Mark|author3-link=Mark Overmars|last4=Schwarzkopf|first4=Otfried|title=Computational Geometry|publisher=Springer-Verlag|year=2000|isbn=9783540656203|edition=2nd|chapter=Chapter 2: Line segment intersection|pages=19–44}}.
*{{citation|last1=Boissonat|first1=J.-D.|last2=Preparata|first2=F. P.|author2-link=Franco P. Preparata|title=Robust plane sweep for intersecting segments|journal=SIAM Journal on Computing|year=2000|url=http://www.cs.brown.edu/research/pubs/pdfs/2000/Boissonnat-2000-RPS.pdf|doi=10.1137/S0097539797329373|volume=29|issue=5|pages=1401–1421}}.
*{{citation|last=Brown|first=K. Q.|title=Comments on “Algorithms"Algorithms for Reporting and Counting Geometric Intersections”Intersections"|journal=IEEE transactions on Computers|year=1981|volume=C-30|issue=2|page=147}}.
*{{citation|last1=Chazelle|first1=Bernard|author1-link=Bernard Chazelle|last2=Edelsbrunner|first2=Herbert|author2-link=Herbert Edelsbrunner|title=An optimal algorithm for intersecting line segments in the plane|journal=[[Journal of the ACM]]|volume=39|issue=1|pages=1–54|year=1992|doi=10.1145/147508.147511}}.
*{{citation|last1=Chen|first1=E. Y.|last2=Chan|first2=T. M.|author2-link=Timothy M. Chan|contribution=A space-efficient algorithm for segment intersection|title=Proc. 15th Canadian Conference on Computational Geometry|year=2003|url=http://www.cccg.ca/proceedings/2003/31.pdf}}.