Content deleted Content added
ce |
mNo edit summary |
||
Line 5:
Quantum inverse scattering method starts by quantization of Lax representation and reproduce results of Bethe ansatz.
Actually it permits to rewrite Bethe ansatz in a new form: algebraic Bethe ansatz. This led to further progress in understanding of [[Heisenberg model (quantum)]],
quantum [[Nonlinear Schrödinger equation ]] (also known as [[Lieb-Liniger Model]] or [[Bose gas]] with delta interaction) and [[Hubbard model]]. Theory of correlation functions was developed: determinant representations, description by differential equations and Riemann-Hilbert problem and asymptotic. Explicit expression for higher conservation laws. In mathematics it led to formulation of [[quantum groups]]. Especially interesting one is [[Yangian]]. Essential progress was achieved in study of [[6 vertex model]]: the bulk free energy depends on boundary conditions in [[thermodynamic limit]].
|