Submodular set function: Difference between revisions

Content deleted Content added
Anonash (talk | contribs)
Anonash (talk | contribs)
Expanded definition
Line 4:
 
==Definition==
'''Submodular function''' is a set function <math>f:2^{\Omega}\rightarrow R</math> suchwhich thatsatisfies forone anyof <math>X\subseteqthe Y\subseteqfollowing \Omega''equivalent''</math>ref andname="SchrijverBook" <math>x\in \Omega\backslash Y</math> we have that <math>f(X\cup \{x\})-f(X)\geq f(Y\cup \{x\})-f(Y)</math>. A submodular function is also a [[subadditive]] function, but a subadditive function need not be submodulardefinitions.
# For every <math>X\subseteq Y\subseteq \Omega</math> and <math>x\in \Omega\backslash Y</math> we have that <math>f(X\cup \{x\})-f(X)\geq f(Y\cup \{x\})-f(Y)</math>
# For every <math>S,T\subseteq \Omega</math> we have that <math>f(S)+f(T)\geq f(S\cup T)+f(S\cap T)</math>
# For every <math>X\subseteq \Omega</math> and <math>x_1,x_2\in \Omega\backslash X</math> we have that <math>f(X\cup \{x_1\})+f(X\cup \{x_2\})\geq f(X\cup \{x_1,x_2\})+f(X)</math>
 
A submodular function is also a [[subadditive]] function, but a subadditive function need not be submodular.
 
==Examples==
Line 27 ⟶ 32:
 
==References==
*Alexander Schrijver. Combinatorial Optimization, Polyhedra and Efficiency.
{{reflist|
refs=
*<ref name="SchrijverBook">Alexander Schrijver. Combinatorial Optimization, Polyhedra and Efficiency.</ref>
<ref name="GLS">Grotschel, Lovasz, Schrijver</ref>
<ref name="Cunningham">Cunningham</ref>