Content deleted Content added
m moved User:Anonash/Submodular functions to Submodular set function: Move from userspace to article space. |
Expanded definition |
||
Line 4:
==Definition==
'''Submodular function''' is a set function <math>f:2^{\Omega}\rightarrow R</math>
# For every <math>X\subseteq Y\subseteq \Omega</math> and <math>x\in \Omega\backslash Y</math> we have that <math>f(X\cup \{x\})-f(X)\geq f(Y\cup \{x\})-f(Y)</math>
# For every <math>S,T\subseteq \Omega</math> we have that <math>f(S)+f(T)\geq f(S\cup T)+f(S\cap T)</math>
# For every <math>X\subseteq \Omega</math> and <math>x_1,x_2\in \Omega\backslash X</math> we have that <math>f(X\cup \{x_1\})+f(X\cup \{x_2\})\geq f(X\cup \{x_1,x_2\})+f(X)</math>
A submodular function is also a [[subadditive]] function, but a subadditive function need not be submodular.
==Examples==
Line 27 ⟶ 32:
==References==
*Alexander Schrijver. Combinatorial Optimization, Polyhedra and Efficiency.▼
{{reflist|
refs=
▲
<ref name="GLS">Grotschel, Lovasz, Schrijver</ref>
<ref name="Cunningham">Cunningham</ref>
|