Rosetta@home: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Importanza del progetto: aggiornato numero di strutture depositate. Attualmente sono circa 78.000
Riga 32:
Con il completamento del Genoma umano gli scienziati hanno soltanto una visione "piana" della struttura delle proteine (la struttura primaria sono le sequenze di aminoacidi). Per poter conoscere approfonditamente cosa fanno le proteine, gli scienziati hanno bisogno di conoscere la struttura tridimensionale delle proteine (struttura terziaria). Conoscendo le proteine in 3D, gli scienziati potranno intuire il loro ruolo nei processi delle cellule e creare terapie più efficaci nel combattere un gran numero di malattie.
 
La struttura 3D delle proteine attualmente è scoperta in modo sperimentale nei laboratori attraverso la [[cristallografia a raggi X]] oppure attraverso la [[risonanza magnetica nucleare]]. Il processo è però molto lento (possono essere impiegate settimane o addirittura mesi per capire come cristallizzare una proteina per la prima volta) e molto costoso (circa $100'000 USD per proteina).<ref>{{Cita libro |titolo= Structural Bioinformatics |curatore= Bourne PE, Helge W| anno=2003 |città= Hoboken, NJ | editore=Wiley-Liss | id=ISBN 978-0471201991 |oclc= 50199108 }}</ref> Una volta che la struttura 3D di una proteina è completata, spesso viene depositata in un database di pubblico dominio come il [http://www.rcsb.org/ Protein Databank] o il [http://www.ccdc.cam.ac.uk/ Cambridge Protein Structure Database]. Purtroppo, il tasso a cui nuove sequenze vengono scoperte, supera di gran lunga la determinazione della loro struttura. Di oltre 7.400.000 sequenze proteiche disponibili nel database di proteine non ridondanti in [[NCBI]], meno di 5280.000 strutture tridimensionali sono state risolte e depositate presso il Protein Data Bank, la banca dati principale per le informazioni sulla struttura delle proteine.<ref>{{Cita web | titolo= Yearly Growth of Protein Structures |editore= RCSB Protein Data Bank |anno= 2008 |accesso=30 novembre 2008| url=http://www.pdb.org/pdb/statistics/contentGrowthChart.do?content=molType-protein&seqid=100}}</ref> Uno degli obiettivi principali di Rosetta@home è quello di prevedere le strutture proteiche con la stessa precisione dei metodi esistenti, ma in un modo che richiede molto meno tempo e denaro.
Rosetta@home sviluppa anche metodi per determinare la struttura e l'interazione delle proteine di membrana (ad esempio, GPCR),<ref>{{Cita web | titolo=Rosetta@home: David Baker's Rosetta@home journal (message 55893) | autore=Baker D | opera= Rosetta@home forums| editore=University of Washington |anno=2008 |accesso=7 ottobre 2008|url= http://boinc.bakerlab.org/rosetta/forum_thread.php?id=1177&nowrap=true#55893}}</ref> che sono particolarmente difficili da analizzare con tecniche tradizionali, ma che rappresentano la maggioranza degli obiettivi per i moderni farmaci.
 
Riga 41:
Rosetta@home è utilizzata anche nella previsione di interazioni proteiche, in cui si determina la struttura di complessi multiproteici, o [[struttura quaternaria|strutture quaternarie]]. Questo tipo di interazioni proteiche è presente in molte funzioni cellulari, tra cui [[antigene]]-[[anticorpo]], legame [[enzima]]-[[inibitore enzimatico|inibitore]] e import-export cellulare. Determinare queste interazioni è essenziale per lo sviluppo di farmaci. Rosetta è utilizzata nel Critical Assessment of Prediction of Interactions (CAPRI), che valuta lo stato dell’arte nel campo del docking proteico, analogamente a come il CASP misura i progressi nella previsione della struttura delle proteine. La potenza di calcolo messa a disposizione dai volontari del progetto Rosetta@home è stato considerato un fattore importante nelle prestazioni di Rosetta in CAPRI, dove le sue previsioni di docking sono state tra le più accurate e complete.<ref name="CAPRI3_1">{{Cita pubblicazione |autore=Wang C, Schueler-Furman O, Andre I, ''et al.'' |titolo=RosettaDock in CAPRI rounds 6-12 |rivista=Proteins |volume=69 |numero=4 |pagine=758–63 |anno=2007 |mese=dicembre |pmid=17671979 |doi=10.1002/prot.21684 |url=}}</ref>
 
All'inizio del 2008, Rosetta è stata utilizzata per la progettazione computazionale di una proteina con una funzione mai osservata in natura.<ref name="RetroAldol">{{Cita pubblicazione |autore=Jiang L, Althoff EA, Clemente FR, ''et al.'' |titolo=De novo computational design of retro-aldol enzymes |rivista=Science|volume=319 |numero=5868 |pagine=1387–91 |anno=2008 |mese=March |pmid=18323453 |doi=10.1126/science.1152692 |url=}}</ref> Questo è stato in parte ispirato da un articolo di alto profilo del 2004, che descrive la progettazione computazionale di una proteina con migliorata attività enzimatica rispetto alla sua forma naturale.<ref>{{Cita pubblicazione | titolo=Protein prize up for grabs after retraction | autore=Hayden EC | rivista=Nature | data=13 febbraio 2008 | doi=10.1038/news.2008.569 }}</ref> In un articolo del 2008 dal gruppo David Baker, in cui è citato il progetto Rosetta@home per le risorse computazionali che ha messo a disposizione, viene descritto come la proteina è stata fatta. L’articolo è stato un importante proof of concept per questo metodo di progettazione di proteine. Questo tipo progettazione di proteine potrebbe avere applicazioni future nella scoperta di farmaci, nella [[chimica verde]], e nel biorisanamento.
 
==Attinenza medica==