Universal approximation theorem: Difference between revisions

Content deleted Content added
subcat
Line 11:
<blockquote>
 
Let φ(·) be a nonconstant, bounded, and [[monotonic function|monotonically]]-increasing [[continuous function|continuous]] function. Let ''I''<sub>''m''</sub> denote the ''m''-dimensional unit hypercube [0,1]<sup>''m''</sup>. The space of continuous functions on ''I''<sub>''m''<sub>0</sub></sub> is denoted by ''C''(''I''<sub>''m''</sub>). Then, given any function ''f'' ∈ ''C''(''I''<sub>''m''</sub>) and є &gt; 0, there exist an integer ''N'' and sets of real constants ''α''<sub>''i''</sub>, ''b''<sub>''i''</sub> ∈ '''R''', ''w''<sub>''i''</sub> ∈ '''R'''<sup>''m''</sup>, where ''i'' = 1, ..., ''N'' such that we may define:
 
: <math>