Prior knowledge for pattern recognition: Difference between revisions

Content deleted Content added
Revert to revision 470815439 dated 2012-01-11 16:49:11 by FrescoBot using popups
Class-invariance: grammar, indent maths
Line 21:
* [[Scaling_(geometry)|scaling]].
 
Incorporating the invariance to a transformation <math>T_{\theta}: \boldsymbol{x} \mapsto T_{\theta}\boldsymbol{x}</math> parametrized in <math>\theta</math> into a classifier of output <math>f(\boldsymbol{x})</math> for an input pattern <math>\boldsymbol{x}</math> corresponds to enforceenforcing the equality
 
:<math>
f(\boldsymbol{x}) = f(T_{\theta}\boldsymbol{x}), \quad \forall \boldsymbol{x}, \theta .</math>
</math>
 
Local invariance can also be considered for a transformation centered at <math>\theta=0</math>, so that <math>T_0\boldsymbol{x} = \boldsymbol{x}</math>, by using the constraint
 
:<math>
\left.\frac{\partial}{\partial \theta}\right|_{\theta=0} f(T_{\theta} \boldsymbol{x}) = 0 .
</math>
 
The function <math>f</math> in these equations can be either the decision function of the classifier or its real-valued output.
 
Another approach is to consider the class-invariance with respect to a "___domain of the input space" instead of a transformation. In this case, the problem becomes finding <math>f</math> so that
 
:<math>
f(\boldsymbol{x}) = y_{\mathcal{P}},\ \forall \boldsymbol{x}\in \mathcal{P} ,
</math>
 
where <math>y_{\mathcal{P}}</math> is the membership class of the region <math>\mathcal{P}</math> of the input space.
 
A different type of class-invariance found in pattern recognition is the '''permutation-invariance''', i.e. invariance of the class to a permutation of elements in a structured input. A typical application of this type of prior knowledge is a classifier invariant to permutations of rows inof the matrix inputs.
 
== Knowledge of the data ==