Hilbert basis (linear programming): Difference between revisions

Content deleted Content added
Definition: minimality requirement was missing
Line 2:
 
== Definition ==
A set <math>A=\{a_1,\ldots,a_n\}</math> of integer vectors is a Hilbert basis if every integer vector inof its [[convex cone]]
 
:<math>C=\{ \lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1,\ldots,\lambda_n \geq 0, \lambda_1,\ldots,\lambda_n \in\mathbb{R}\}</math>
 
isif alsoevery ininteger itsvector from ''C'' belongs to the [[integer convex cone]]
 
:<math>\{ \alpha_1 a_1 + \ldots + \alpha_n a_n \mid \alpha_1,\ldots,\alpha_n \geq 0, \alpha_1,\ldots,\alpha_n \in\mathbb{Z}\}</math>