Content deleted Content added
m r2.6.4) (Robot: Modifying de:Random-phase approximation |
Chris Howard (talk | contribs) series of papers by Bohm & Pines |
||
Line 1:
[[File:Random_phase_approximation_ring_diagrams.png|thumb|400px|Ring diagrams that are summed up in order to obtain the RPA approximation]]
The '''random phase approximation''' ('''RPA''') is an approximation method in [[condensed matter physics]] and in [[nuclear physics]]. It was first introduced by [[David Bohm]] and [[David Pines]] as an important result in a series of seminal papers of 1952 and 1953.<ref>D. Bohm and D. Pines: ''A Collective Description of Electron Interactions. I. Magnetic Interactions'', Phys. Rev. '''
In the RPA, [[electron]]s are assumed to respond only to the [[total electric potential]] ''V''('''r''') which is the sum of the external perturbing potential ''V''<sub>ext</sub>('''r''') and a screening potential ''V''<sub>sc</sub>('''r'''). The external perturbing potential is assumed to oscillate at a single frequency ω, so that the model yields via a self-consistent field (SCF) method <ref>H. Ehrenreich and M. H. Cohen, [http://dx.doi.org/10.1103/PhysRev.115.786 Phys. Rev. '''115''', 786 (1959)]</ref> a
|