Regime ipersonico: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m ortografia
Riga 24:
La descrizione dei flussi aerodinamici si basa su un certo tipo di parametri, detti [[gruppo adimensionale|gruppi adimensionali]], che permettono di semplificare e ridurre il numero di casi possibili da analizzare. Nel caso di flussi transonici, il [[numero di Mach]] e il [[numero di Reynolds]] ne permettono un'agevole classificazione.
 
Ovviamente anche il regime ipersonico richiede tali parametri: innanzitutto, l'equazione che governa l'angolo dell'[[onda d'urto]] tende a diventare indipendente dal numero di Mach dai 10 Mach in avanti; in secondo luogo, la formazione di intense onde d'urto attorno al corpo in volo indica che il numero di Reynolds diviene meno rilevante nella descrizione dello [[strato limite]] del corpo (benché resti comunque importante); infine, le elevate temperature del regime ipersonico segnalano l'importanza degli effetti dei [[gas|gas reali]]. Per questo quest'ultimo motivo, lo studio del regime ipersonico è spesso denominato "'''aerotermodinamica'''".
 
L'introduzione dei gas reali richiede un numero superiore di variabili necessarie alla descrizione dello stato del gas: mentre un gas stazionario è caratterizzato da tre parametri (la [[pressione]], la [[temperatura]] e il [[volume]]) e un gas in movimento da quattro (i tre precedenti più la [[velocità]]), un gas ad elevate temperature e in equilibrio chimico richiede delle equazioni di stato per ogni suo componente, mentre un gas non in equilibrio è descritto da queste equazioni se si aggiunge un'ulteriore variabile, cioè il tempo. Tutto questo significa che per descrivere un flusso non all'equilibrio in ogni istante temporale servono tra le 10 e le 100 variabili; inoltre, si deve ricordare che un flusso ipersonico rarefatto (solitamente caratterizzato da un [[numero di Knudsen]] superiore a uno) non segue le [[equazioni di Navier-Stokes]].