Dual cone and polar cone: Difference between revisions

Content deleted Content added
Line 7:
The '''dual cone''' <math>C^* </math> of a [[subset]] <math>C</math> in a [[linear space]] <math>X</math>, e.g. [[Euclidean space]] <math>\mathbb R^n</math>, with [[topological]] [[dual space]] <math>X^*</math> is the set
 
:<math>C^* = \left \{y\in \mathbb X^*: \langle y , x \rangle \geq 0 \quad \forall x\in C \right \},</math>
 
<math>C^* </math> is always a [[convex cone]], even if <math>C </math> is neither [[convex set|convex]] nor a [[linear cone|cone]].