Content deleted Content added
No edit summary |
No edit summary |
||
Line 14:
where <math>\textrm{lfp}</math> denotes the least fixed point.
This result is often attributed to [[Alfred Tarski]], but the original statement of [[Tarski's fixed point theorem]] is about monotone functions on complete lattices. Since all complete lattices are complete partial orders but not vice-versa, and since all monotone functions on complete lattices are Scott-continuous, Tarski's fixed point theorem is entailed by the present result. (It is not guaranteed that all non-empty subsets of a complete partial order are [[directed set|directed]]; a complete lattice C is a complete partial order with the additional properties that (i) all C's non-empty subsets are directed and (ii) for every non-empty subset of C the subset's [[upper set|upper closure]] is a [[filter (mathematics)|filter]].) Yet from a set-theoretic point of view Tarski's result seems the more fundamental of the two, in the following sense: proving Kleene's result in axiomatic set theory requires
|