Content deleted Content added
No edit summary |
|||
Line 2:
== Examples==
Any mapping <math>\phi_a</math> of the open [[unit disc]] to itself, :<math>\phi_a(z) =\frac{z-a}{1 - \bar{a}z},</math> where <math>|a|\le 1,</math> is univalent.
==Basic properties==
One can prove that if <math>G</math> and <math>\Omega</math> are two open [[connected space|connected]] sets in the complex plane, and
Line 18 ⟶ 16:
==Comparison with real functions==
For [[real number|real]] [[analytic function]]s, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function
Line 26 ⟶ 23:
== References==
* John B. Conway. ''Functions of One Complex Variable I''. Springer-Verlag, New York, 1978. ISBN 0-387-90328-3.
* John B. Conway. ''Functions of One Complex Variable II''. Springer-Verlag, New York, 1996. ISBN 0-387-94460-5.
▲{{planetmath|title=univalent analytic function|id=5633}}
[[Category:Analytic functions]]
|