Univalent function: Difference between revisions

Content deleted Content added
No edit summary
Line 2:
 
== Examples==
 
Any mapping <math>\phi_a</math> of the open [[unit disc]] to itself, :<math>\phi_a(z) =\frac{z-a}{1 - \bar{a}z},</math> where <math>|a|\le 1,</math> is univalent.
 
==Basic properties==
 
One can prove that if <math>G</math> and <math>\Omega</math> are two open [[connected space|connected]] sets in the complex plane, and
 
Line 18 ⟶ 16:
 
==Comparison with real functions==
 
For [[real number|real]] [[analytic function]]s, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function
 
Line 26 ⟶ 23:
 
== References==
 
* John B. Conway. ''Functions of One Complex Variable I''. Springer-Verlag, New York, 1978. ISBN 0-387-90328-3.
 
* John B. Conway. ''Functions of One Complex Variable II''. Springer-Verlag, New York, 1996. ISBN 0-387-94460-5.
 
{{planetmathPlanetMath attribution|title=univalent analytic function|id=5633}}
----
{{planetmath|title=univalent analytic function|id=5633}}
 
[[Category:Analytic functions]]