Startup neutron source: Difference between revisions

Content deleted Content added
H3llBot (talk | contribs)
m BOT: Checking dead links; Marked 1 link with {{Dead link}} (Further info: WP:DEADLINK)
m Changed "exposition" to exposure"
Line 7:
 
The sources can be of two types:<ref name="nucleng">{{cite book|url=http://books.google.com/books?id=EMy2OyUrqbUC&pg=PA27&dq=neutron+startup+source&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=4#v=onepage&q=neutron%20startup%20source&f=false |title=Nuclear Engineering Handbook |author=Ken Kok|page=27|publisher=CRC Press|date=2009 |isbn=1420053906}}</ref>
* '''Primary sources''', used for startup of a fresh reactor core; conventional [[neutron source]]s are used. The primary sources are removed from the reactor after the first fuel campaign, usually after few months. Primary sources are subject to [[neutron capture]]; expositionexposure to thermal neutron flux in an operating reactor reduces their lifetime.
** [[Californium-252]] ([[spontaneous fission]])
** [[Plutonium-238]]-[[beryllium]], [[plutonium-239]]-beryllium or [[americium]]-beryllium (α,n [[nuclear reaction]]s).
* '''Secondary sources''', originally inert, become radioactive and neutron-producing only after [[neutron activation]] in the reactor. Due to this, they tend to be less expensive. The expositionExposure to thermal neutrons also serves to maintain the source activity (the radioactive isotopes are both burned and generated in neutron flux).
** [[Antimony|Sb]]-[[Beryllium|Be]] [[photoneutron]] source; antimony [[neutron activation|becomes radioactive]] in the reactor and its strong gamma emissions (1.7 MeV for <sup>124</sup>Sb) interact with [[beryllium-9]] by an (γ,n) reaction and provide [[photoneutron]]s. In a PWR reactor one neutron source rod contains 160 grams of antimony, and stay in the reactor for 5–7 years.<ref>{{cite book|url=http://books.google.com/books?id=SJOE00whg44C&pg=PA147&dq=neutron+startup+source&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=22#v=onepage&q=neutron%20startup%20source&f=false |title=The radiochemistry of nuclear power plants with light water reactors|author=Karl-Heinz Neeb|page=147|publisher=Walter de Gruyter|date=1997 |isbn=3110132427}}</ref> The sources are often constructed as an antimony rod surrounded by beryllium layer and clad in [[stainless steel]].<ref name="tpub">{{cite web|author=Integrated Publishing |url=http://www.tpub.com/content/doe/h1019v1/css/h1019v1_108.htm |title=Neutron Sources Summary |publisher=Tpub.com |date= |accessdate=2010-03-28}}</ref><ref>{{cite web|url=http://www.lib.ncsu.edu/specialcollections/digital/text/engineering/reactor/murray/MurNBabneutron040953.html |title=Memorandum from Raymond L. Murray to Dr. Clifford K. Beck |publisher=Lib.ncsu.edu |date= |accessdate=2010-03-28}}</ref> Antimony-beryllium [[alloy]] can be also used.