Error analysis for the Global Positioning System: Difference between revisions

Content deleted Content added
Derivation of equations for computing geometric dilution of precision: change invalid wikipedia reference to WL & fix section link
Line 152:
\end{bmatrix}
\ (1)</math>
where <math>\ e_1,\ e_2,\ e_3,\ and\ e_4 </math> are the errors in pseudoranges 1 through 4 respectively. This equation comes from linearizing [[the Newton-Raphson equation|Global_Positioning_System#Multidimensional_Newton-Raphson_calculations]] relating pseudoranges to receiver position, satellite positions, and receiver clock errors as shown in.<ref>{{cite web|author=Česky |url=http://en.wikipedia.org/wiki/Global_Positioning_System#multi_nrMultiplying |title=Globalboth Positioningsides Systemby -<math>\ Wikipedia, the free encyclopedia |publisher=En.wikipedia.org |date= |accessdate=2009-10A^{-13}1}\ </refmath> there results
Multiplying both sides by <math>\ A^{-1}\ </math> there results
:<math>\
\begin{bmatrix}