Content deleted Content added
Moletrouser (talk | contribs) m Changed "exposition" to exposure" |
m ISBNs (Build KE) |
||
Line 4:
The startup sources are typically inserted in regularly spaced positions inside the [[reactor core]], in place of some of the [[fuel rod]]s.
The sources are important for safe reactor startup. The spontaneous fission and [[cosmic ray]]s serve as weak neutron sources, but these are too weak for the reactor instrumentation to detect; relying on them could lead to a "blind" start, which is an unsafe condition.<!--with chance of going supercritical and causing partial [[core meltdown]] or at least fuel element damage--><ref>{{cite book|url=http://books.google.com/books?id=SkrVDKMconIC&pg=PA224&dq=neutron+startup+source&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=1#v=onepage&q=neutron%20startup%20source&f=false|page=224|title=Canada enters the nuclear age: a technical history of Atomic Energy of Canada Limited|publisher=McGill-Queen's Press - MQUP|date=1997 |isbn=
The sources can be of two types:<ref name="nucleng">{{cite book|url=http://books.google.com/books?id=EMy2OyUrqbUC&pg=PA27&dq=neutron+startup+source&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=4#v=onepage&q=neutron%20startup%20source&f=false |title=Nuclear Engineering Handbook |author=Ken Kok|page=27|publisher=CRC Press|date=2009 |isbn=
* '''Primary sources''', used for startup of a fresh reactor core; conventional [[neutron source]]s are used. The primary sources are removed from the reactor after the first fuel campaign, usually after few months. Primary sources are subject to [[neutron capture]]; exposure to thermal neutron flux in an operating reactor reduces their lifetime.
** [[Californium-252]] ([[spontaneous fission]])
** [[Plutonium-238]]-[[beryllium]], [[plutonium-239]]-beryllium or [[americium]]-beryllium (α,n [[nuclear reaction]]s).
* '''Secondary sources''', originally inert, become radioactive and neutron-producing only after [[neutron activation]] in the reactor. Due to this, they tend to be less expensive. Exposure to thermal neutrons also serves to maintain the source activity (the radioactive isotopes are both burned and generated in neutron flux).
** [[Antimony|Sb]]-[[Beryllium|Be]] [[photoneutron]] source; antimony [[neutron activation|becomes radioactive]] in the reactor and its strong gamma emissions (1.7 MeV for <sup>124</sup>Sb) interact with [[beryllium-9]] by an (γ,n) reaction and provide [[photoneutron]]s. In a PWR reactor one neutron source rod contains 160 grams of antimony, and stay in the reactor for 5–7 years.<ref>{{cite book|url=http://books.google.com/books?id=SJOE00whg44C&pg=PA147&dq=neutron+startup+source&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&num=50&as_brr=3&cd=22#v=onepage&q=neutron%20startup%20source&f=false |title=The radiochemistry of nuclear power plants with light water reactors|author=Karl-Heinz Neeb|page=147|publisher=Walter de Gruyter|date=1997 |isbn=
[[Boron-11]] can be added to the fuel; it emits neutrons by the (α,n) reaction to [[nitrogen-14]]. [[Deuterium]] in heavy water emits neutrons by (γ,n) reaction to <sup>1</sup>H.<ref name="tpub"/>
|