Utente:Poeta60/sandbox2: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Poeta60 (discussione | contributi)
Poeta60 (discussione | contributi)
Riga 100:
* Elishakoff, I., 2000. Elastic stabilty: from Euler to Koiter there was none like Koiter. ''Meccanica'', vol 35, pp 375-380.
* Budiansky B., 1974. Theory of Buckling and Post-Buckling Behavior of Elastic Structures. Advances in Applied Mechanics Volume 14, 1974, Pages 1–65.
* Casciaro, R., Lanzo, et alA., 1992D. Finiteand elementSalerno, asymptoticG., analysis1991. ofComputational slenderproblems in elastic structuresstructural stability. In: a''Nonlinear simpleProblems approach.in Engineering''Int. J(C. Num.Carmignani Methand G. EngMaino eds.).'', volWorld 35,Scientific pppubl., 1397-1426Singapore.
* Casciaro, R., Salerno, G. and Lanzo, A. D., 1992. Finite element asymptotic analysis of slender elastic structures: a simple approach. ''Int. J. Num. Meth. Eng.'', vol 35, pp 1397-1426.
* [[Warner T. Koiter|Koiter, W.T.]], 1945. ''Over de stabiliteit van het elastische evenwicht''. Dissertation, Delft, Holland (Translation: ''On the Stability of Elastic Equilibrium'', NASA TT-F-10833, 1967 and AFFDL-TR-70-25, 1970).
* [[Aleksandr Michajlovič Ljapunov|Lyapunov A.M.]], 1983. ''The General Problem of the Stability of Motion'' (In Russian), Doctoral dissertation, Univ. Kharkov 1892 English translations: (1) ''Stability of Motion'', Academic Press, New-York & London, 1966 (2) ''The General Problem of the Stability of Motion'', (A.T. Fuller trans.) Taylor & Francis, London 1992. Included is a biography by Smirnov and an extensive bibliography of Lyapunov's work.
* Pignataro, M., Di Carlo, A. and Casciaro, R., 1982. On nonlinear beam model from the point of view of computational post--buckling analysis. ''Int. J. Solids Structures'', vol 18 (4), pp 327--347.
* Thompson, J.M.T., 1982. Instabilities and Catastrophes in Science and Engineering. John Wiley and Sons, Chichester, New York.
* [[Stepan Prokof'evič Timošenko|Timoshenko, S.P.]], Gere, J.M., 1961. Theory of Elastic Stability. McGraw-Hill, New York.