Content deleted Content added
clarification |
→Proof: analytic continuation unnecessary |
||
Line 11:
Assume ''f'':''U'' → '''C''' is a non-constant holomorphic function and <math>U</math> is a connected [[open subset]] of the complex plane. We have to show that every [[Point (geometry)|point]] in <math>f(U)</math> is an [[interior point]] of <math>f(U)</math>, i.e. that every point in <math>f(U)</math> is contained in a disk which is contained in <math>f(U)</math>.
Consider an arbitrary <math>w_0</math> in <math>f(U)</math>. Then there exists a point <math>z_0</math> in ''U'' such that <math>w_0 = f(z_0)</math>. Since ''U'' is open, we can find <math>d>0</math> such that the closed disk <math>B</math> around <math>z_0</math> with radius ''d'' is fully contained in ''U''
We know that ''g''(''z'') is not constant and holomorphic. The reciprocal of any holomorphic ''g''(''z'') is [[meromorphic]] and has isolated poles. Thus the roots of holomorphic non-constant functions are isolated. In particular, the roots of ''g'' are isolated and by further decreasing the radius of the image disk ''d'', we can assure that ''g''(''z'') has only a single root in ''B'' (although this single root may have multiplicity greater than 1).
|