User:Cplusplusboy/sandbox: Difference between revisions

Content deleted Content added
m dd
m gfgf
Line 1:
Consider a continuous time signal <math>x(t)</math>. Its one sided Laplace transform is defined as :
<math>L\{x(t)\} \equiv X(s) \equiv \int_0^{\infty}{x(t)e^{-st}dt}
</math>
Line 9:
Now the Laplace transform of the sampled signal (discrete time) is called [[Star_transform]] and is given by :
<math> \begin{array}{l l l l l l}
L\{x^{*}(kkT)\} & = & X^{*}(s) & = & \int_0^{\infty}{\sum_{k=0}^{\infty}{x(t).\delta(t-kT)} e^{-st}dt} \\
& = & \sum_{k=0}^{\infty}{x^{*}(kkT).ze^{-kkTs}}, z& =& e^\text{sTby sifting property} \\
 
& = & \sum_{k=0}^{\infty}{x^{*}(kTk).ez^{-kTsk}}, &z &= \texte^{by sifting propertysT} \\
\left. L\{x^{*}(kkT)\}\right|_{s = \frac{\ln{(z)}}{T}} & = & \left.X^{*}(s)\right|_{s = \frac{\ln{(z)}}{T}} & = & Z\{x^{*}(k)\}
 
& = & \sum_{k=0}^{\infty}{x^{*}(k).z^{-k}}, z = e^{sT} \\
\left. L\{x^{*}(k)\}\right|_{s = \frac{\ln{(z)}}{T}} & = & \left.X^{*}(s)\right|_{s = \frac{\ln{(z)}}{T}} & = & Z\{x^{*}(k)\}
\end{array} </math>