Explicit multi-threading: Difference between revisions

Content deleted Content added
Joshxyz (talk | contribs)
No edit summary
Joshxyz (talk | contribs)
Line 22:
In January 2007, a 64-processor computer <ref>University of Maryland, press release, June 26, 2007: [http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1459 "Maryland Professor Creates Desktop Supercomputer"].</ref> named Paraleap <ref>University of Maryland, A. James Clark School of Engineering, press release, November 28, 2007: [http://www.eng.umd.edu/media/pressreleases/pr112707_superwinner.html "Next Big "Leap" in Computing Technology Gets a Name"].</ref>, that demonstrates the overall concept was completed. The XMT concept was presented in {{harvtxt|Vishkin|Dascal|Berkovich|Nuzman|1998}} and {{harvtxt|Naishlos|Nuzman|Tseng|Vishkin|2003}} and the XMT 64-processor computer in {{harvtxt|Wen|Vishkin|2008}}. Since making parallel programming easy is one of the biggest challenges facing computer science today, the demonstration also sought to include teaching the basics of PRAM algorithms and XMTC programming to students ranging from high-school {{harvtxt|Torbert|Vishkin|Tzur|Ellison|2010}} to graduate school.
 
Experimental work reported in {{harvtxt|Caragea|Vishkin|2011}} for the [[Maximum Flow]]flow problem]], and in two papers by {{harvtxt|Edwards|Vishkin|2012}} for the [[Graph Connectivity ([[Connectivity (graph theory)]]), Graph Biconnectivity ([[biconnected graph]]) and Graph Triconnectivity ([[Triconnected component]]) problems demonstrated that for some of the most advanced algorithms in the parallel algorithmic literature, the [[XMT]] paradigm can offer 8 times to over 100 times greater speedups than for the same problems on state-of-the-art multi-core computers. Each reported speedup was obtained by comparing clock cycles on an XMT prototype relative to the fastest serial algorithm running on the fastest serial machines.
 
==References==
*{{citation