Robotics middleware: Difference between revisions

Content deleted Content added
Introduced lead section
Line 101:
<tr>
<td style="border:1px solid lightblue" align="justify" valign="center">
* <u>Fault tolerance and robustness aspects</u> - MIRO does not provide any explicit fault tolerant capabilities on the system level, not considering the ones provided by the underlying middleware and the operating system (resource management, conflict resolution etc.). There are some [[exception handling]] capabilities apart from the ones provided by the underlying middleware, though, and there is a list of MIRO exceptions which indicate hardware problems, service call failures or malfunction and load problems. In addition, a post- or predevelopment phase capability which may improve reliability of the software is a so-called “logging service” with several levels of notification. To increase the reliability of the software and minimize the number of errors, a partially automated code generation is provided. This comes automatically when using the IDL compiler, which helps to generate all the code for the communication and underlying middleware services. But again, most of the features mentioned are not part of the SIS itself but rather facilities it relies on. The use of a BAP (behaviors, action patterns, policy) framework can contribute to the robustness of the applications based on MIRO. The BAP proposes ways of combining simple behaviors to form complex ones. The principle used for creating complex behavior hierarchies is similar to the finite state machine (FSM) principle, represented in figure 6. Action patterns, represented in figure 5, are composed of behaviors and “guards” which can notify about some external event. Apart from this, the authors claim that a dynamic reconfiguration of policies is possible. This feature also may contribute to robustness. On the other hand, there are no implications whether it is possible to implement any planning or learning capabilities.
</td>
</tr>