Artin approximation theorem: Difference between revisions

Content deleted Content added
lk
m Various citation cleanup + AWB fixes using AWB (8062)
Line 4:
Let
 
:'''x''' = ''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>
 
denote a collection of ''n'' [[indeterminate (variable)|indeterminate]]s,
Line 10:
''k'''''<nowiki>[[x]]</nowiki>''' the [[ring (mathematics)|ring]] of formal power series with indeterminates '''x''' over a field ''k'', and
 
: '''y''' = ''y''<sub>1</sub>, …, ''y''<sub>''m''</sub>
 
a different set of indeterminates. Let
 
:''f''('''x''', '''y''') = 0
 
be a system of [[polynomial equation]]s in ''k''['''x''', '''y'''], and ''c'' a positive [[integer]]. Then given a formal power series solution '''ŷ'''('''x''') ∈ ''k'''''<nowiki>[[x]]</nowiki>''' there is an algebraic solution '''y'''('''x''') consisting of [[algebraic function]]s such that
Line 25:
==References==
 
*{{Citation | last1=Artin | first1=Michael | author1-link=Michael Artin | title=Algebraic approximation of structures over complete local rings | url=http://www.numdam.org/item?id=PMIHES_1969__36__23_0 | idmr={{MR|0268188}} | year=1969 | journal=[[Publications Mathématiques de l'IHÉS]] | issn=1618-1913 | issue=36 | pages=23–58}}
*Artin, Michael. ''Algebraic Spaces''. Yale University Press, 1971.