First-class constraint: Difference between revisions

Content deleted Content added
Adding/removing wikilink(s)
Examples: Adding/improving reference(s)
Line 131:
:<math>H_f=\int d^{d-1}x \frac{1}{2}\alpha^{-1}(\pi_\sigma,\pi_\sigma)+\frac{1}{2}\alpha(\vec{D}\sigma\cdot\vec{D}\sigma)-\frac{g^2}{2}\eta(\vec{\pi}_A,\vec{\pi}_A)-\frac{1}{2g^2}\eta(\bold{B}\cdot \bold{B})-\eta(\pi_\phi,f)-<\pi_\sigma,\phi[\sigma]>-\eta(\phi,\vec{D}\cdot\vec{\pi}_A).</math>
 
Note that theThe last two terms are a linear combination of the Gaussian constraints and we have a whole family of (gauge equivalent)Hamiltonians parametrized by ''f''. In fact, since the last three terms vanish for the constrained states, we can drop them.
 
==See also==
See also [[Dirac bracket]], [[second class constraints]], [[BRST]], [[analysis of flows]]
 
*[[Dirac bracket]],
*[[second class constraints]],
*[[BRST]],
*[[analysis of flows]]
 
==References==
 
*{{Citation | last1=Dirac | first1=Paul A. M. | title=Lectures on quantum mechanics | url=http://books.google.com/books?id=GVwzb1rZW9kC | publisher=Belfer Graduate School of Science, New York | series=Belfer Graduate School of Science Monographs Series | id={{MR|2220894}} Reprinted by Dover in 2001. | year=1964 | volume=2}}
 
{{DEFAULTSORT:First Class Constraint}}